Spin-orbit relaxation of Cl(2P1/2) and F(2P1/2) in a gas of H2.
نویسندگان
چکیده
The authors present quantum scattering calculations of rate coefficients for the spin-orbit relaxation of F(2P1/2) atoms in a gas of H2 molecules and Cl(2P1/2) atoms in a gas of H2 and D2 molecules. Their calculation of the thermally averaged rate coefficient for the electronic relaxation of chlorine in H2 agrees very well with an experimental measurement at room temperature. It is found that the spin-orbit relaxation of chlorine atoms in collisions with hydrogen molecules in the rotationally excited state j=2 is dominated by the near-resonant electronic-to-rotational energy transfer accompanied by rotational excitation of the molecules. The rate of the spin-orbit relaxation in collisions with D2 molecules increases to a great extent with the rotational excitation of the molecules. They have found that the H2/D2 isotope effect in the relaxation of Cl(2P1/2) is very sensitive to temperature due to the significant role of molecular rotations in the nonadiabatic transitions. Their calculation yields a rate ratio of 10 for the electronic relaxation in H2 and D2 at room temperature, in qualitative agreement with the experimental measurement of the isotope ratio of about 5. The isotope effect becomes less significant at higher temperatures.
منابع مشابه
Gas-to-cluster effects in S 2p-excited SF(6).
High resolution X-ray spectroscopic studies on free SF6 molecules and SF6 clusters near the S 2p ionization thresholds are reported. Spectral changes occurring in clusters for the intense molecular-like S 2p1/2,3/2 → 6a1g-, 2t2g-, and 4eg-resonances are examined in detail. Neither gas-to-cluster spectral shifts nor changes in peak shape are observed for the pre-edge 6a1g-band. Significant chang...
متن کاملDetermination of the barrier height for acetyl radical dissociation from acetyl chloride photodissociation at 235 nm using velocity map imaging.
This work uses velocity map imaging to determine the barrier height for acetyl radical, CH3CO, dissociation to CH3 + CO. Photodissociation of acetyl chloride at 235 nm generates acetyl radicals with an internal energy distribution spanning this barrier. We determine the velocity and internal energy distribution of all nascent acetyl radicals, stable and unstable, by measuring the velocities of ...
متن کاملSpin-polarized hydrogen atoms from molecular photodissociation.
The production of spin-polarized hydrogen atoms from the photodissociation of hydrogen chloride with circularly polarized 193-nanometer light is inferred from the measurement of the complete angular momentum distributions of ground state Cl(2P3/2)and excited state Cl(2P1/2)cofragments by slice imaging. The experimentally measured and ab initio predicted a q(k) (p)parameters, which describe the ...
متن کاملPhotodissociation of propargyl chloride at 193 nm.
The photodissociation of propargyl chloride (C3H3Cl) has been studied at 193 nm. Ion imaging experiments with state-selective detection of the Cl atoms and single-photon ionization of the C3H3 radicals were performed, along with measurements of the Cl + C3H3 and HCl + C3H2 recoil kinetic energy distributions, using a scattering apparatus with electron bombardment ionization detection to resolve...
متن کاملThe Effect of Humidity on the Interaction of Dimethyl Methylphosphonate (DMMP) Vapor with SiO2 and Al2O3 Surfaces, Studied Using Infrared Attenuated Total Reflection Spectroscopy
S1. Procedure for determining SiO2 thickness using XPS Figures S1 and S2 show typical XPS data for SiO2 films prepared as described in the main text. The Si 2p data (Fig. S2a) show a peak from the substrate, which is partially resolved into a 2p1/2 and 2p3/2 spin-orbit doublet, and a peak from SiO2, which is too broad to resolve. Other features, due to SiOx (x<2) at the interface, are not readi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 126 18 شماره
صفحات -
تاریخ انتشار 2007